В устойчивой коллоидной системе превалируют силы отталкивания. Факторы агрегативной устойчивости коллоидных систем

Агрегативная устойчивость/неустойчивость системы зависит от возможности контакта частиц; для слипания частицы должны сблизиться на определенное расстояние. В теории агрегативной устойчивости, известной под названием теория ДЛФО (первые буквы фамилий авторов теории: Б. В. Дерягин и Л. Д. Ландау, Россия, и Э. Фервей и Дж. Т. Овербек, Голландия), рассматривается совместное действие сил притяжения и сил отталкивания между частицами.

Исторический экскурс

Борис Владимирович Дерягин - выдающийся ученый, внесший неоценимый вклад практически в каждый раздел коллоидной химии. Исследуя свойства глинистых суспензий, он установил, что тонкие слои воды между отдельными частицами суспензии обладают свойствами, отличными от свойств воды в объеме, в том числе расклинивающим давлением, препятствующим сближению частиц. Совместное рассмотрение сил притяжения и отталкивания объясняло устойчивость системы. Эти исследования наряду с количественными расчетами и выявлением критерия устойчивости были опубликованы Б. В. Дерягиным совместно с Львом Давидовичем Ландау в нескольких научных статьях 1935-1941 гг.; за рубежом об этих работах узнали значительно позже.

Голландские ученые Э. Фервей (Vervey) и Дж.Т. Овербек (Overbek) также занимались исследованиями в этой области. Э. Фервей в 1934 г. защитил диссертацию, посвященную изучению двойного электрического слоя и стабильности лиофобных коллоидов. Позднее им была опубликована серия статей, где рассматривается действие электрических сил и сил Лондона - Ван-дер-Ваальса между коллоидными частицами, находящимися в растворе электролита. А в 1948 г. в соавторстве с Овербеком вышла его монография «Теория стабильности лиофобных коллоидов» .

Вопрос о научном приоритете относительно создания теории разрешился признанием заслуг всех четырех авторов.

Силы притяжения - это силы межмолекулярного взаимодействия (силы Лондона - Ван-дер-Ваальса). Силы притяжения, возникающие между отдельными атомами, проявляются на очень малых расстояниях порядка атомных размеров. При взаимодействии частиц вследствие аддитивности дисперсионных сил притяжение между частицами проявляется на значительно больших расстояниях. Энергия притяжения обратно пропорциональна квадрату расстояния между частицами:

Силы отталкивания между частицами имеют электростатическую природу. Электростатическая энергия отталкивания, возникающая при перекрытии диффузных слоев, уменьшается с увеличением расстояния по экспоненте:

В приведенных выше формулах для энергий притяжения и отталкивания А * - константа Гамаксра; х - расстояние между частицами; е - диэлектрическая проницаемость дисперсионной среды; е° = 8,85 К) 12 Ф/м - электрическая постоянная; (р^ - потенциал диффузного слоя; А. - толщина диффузного слоя двойного электрического слоя (ДЭС).

Подробнее о строении ДЭС, включающего адсорбционный и диффузный слои, см. в параграфе 4.3.

Энергии притяжения присваивают знак «минус», энергии отталкивания - знак «плюс». Энергии притяжения и отталкивания рассматриваются в теории ДЛФО как составляющие расклинивающего давления между частицами. Действие энергий притяжения и отталкивания в зависимости от расстояния между частицами показано на рис. 4.2.


Рис. 4.2.

На результирующей кривой суммарной энергии на рис. 4.2 можно выделить три участка.

Участок а. На малых расстояниях между коллоидными частицами (до 100 нм) преобладают силы притяжения, возникает энергетическая яма или ближний энергетический минимум. Если частицы сблизятся на такое расстояние, произойдет коагуляция под влиянием сил притяжения. Коагуляция в таких случаях необратима.

Участок б. На средних расстояниях электростатические силы отталкивания больше сил межмолекулярного притяжения, возникает энергетический максимум - потенциальный барьер, препятствующий слипанию частиц; высота барьера зависит от заряда поверхности и толщины диффузного слоя.

Если потенциальный барьер высок, частицы не в состоянии его преодолеть, то коагуляция не происходит. Возможности преодоления барьера определяются его снижением (уменьшение заряда поверхности и сил отталкивания между частицами, например при воздействии электролита) или увеличением энергии частиц (нагревание).

В лияние электролитов на строение двойного электрического слоя разобрано в подпараграфе 4.3.3.

Далее под влиянием сил притяжения частицы сближаются, и происходит коагуляция. Если частицы не могут преодолеть барьер, то коагуляция не происходит и система может сохранять агрегативную устойчивость достаточно долго.

Участок в. На относительно больших расстояниях (около 1000 нм) также превалируют силы притяжения, образуя на результирующей кривой так называемый дальний минимум. Глубина дальнего минимума индивидуальна для каждой системы. При незначительном дальнем минимуме сближению частиц препятствует потенциальный барьер.

Если дальний минимум достаточно глубок, то частицы при сближении не могут покинуть потенциальной ямы и остаются в равновесном состоянии на соответствующем расстоянии друг от друга, сохраняя свою индивидуальность.

Наличие высокого потенциального барьера препятствует более тесному сближению частиц, между ними сохраняется прослойка жидкости. Система в целом сохраняет дисперсность, представляя собой рыхлый осадок - коагулянт, или флокулянт. Такое состояние отвечает обратимости коагуляции; возможен перевод системы в состояние золя (пептизация).

« Пептизация - один из методов получения дисперсных систем, см. параграф 2.4.

При большой концентрации дисперсной фазы может образоваться структурированная система - гель.

Особенности структурированных систем более подробно обсуждаются в параграфе 9.4.

Резюме

Агрегативная устойчивость системы (устойчивость к коагуляции ) во многом определяется наличием электрического заряда на поверхности.

  • Vetvey E.J., Overbeek J. Th. G. Theory of the stability of lyophobic colloids. N. Y.: Elsevier,1948.

Итак, возникновение электрокинетических явлений обусловлено диффузным строением двойного электрического слоя. Разноименность зарядов фаз приводит к перемещению противоионов вместе с жидкой фазой (электроосмос), а в случае дисперсной системы - к перемещению частиц дисперсной фазы (электрофорез). При этом действующая электрическая сила (равная произведению заряда на градиент потенциала) будет тем больше, чем больше зарядов диффузного слоя окажется в подвижной жидкости. Таким образом, электрокинетические явления должны быть развиты тем сильнее, чем больше подвижный заряд диффузного слоя и пропорциональный ему электрокинетический потенциал. Отсюда следует, что электрокинетический потенциал может служить мерой интенсивности электрокинетических явлений и в то же время мерой степени размытия диффузионной части двойного электрического слоя. Поэтому он может быть использован при рассмотрении свойств системы, связанных с существованием диффузного слоя, в частности, устойчивости гидрофобных золей.

19 Устойчивость дисперсных систем

По предложению Н. П. Пескова (1920) устойчивость дисперсных систем подразделяют на два вида: устойчивость к осаждению дисперсной фазы (седиментационная устойчивость) и устойчивость к агрегации ее частиц - агрегативная устойчивость . По отношению к агрегации дисперсные (гетерогенные) системы могут быть устойчивы термодинамически и кинетически. Термодинамически устойчивые дисперсные системы образуются в результате самопроизвольного диспергирования одной из фаз. По классификации П. А. Ребиндера, системы термодинамически устойчивые (образующиеся при самопроизвольном диспергировании) называются лиофильными. Термодинамически неустойчивые дисперсные системы получили название лиофобных систем, они обладают различной кинетической устойчивостью к агрегации частиц. Кинетически устойчивые дисперсные системы не могут быть получены с помощью самопроизвольного диспергирования, они устойчивы в течение определенного времени, иногда очень продолжительного.

Б.Д. Сумм предлагает различать 4 вида неустойчивости коллоидных систем:

1) Термодинамическая (агрегативная) неустойчивость проявляется в постепенном увеличении размеров дисперсных частиц или образования агрегатов из слипшихся частиц.

Эволюцию агрегативно неустойчивой дисперсной системы количественно характеризуют зависимостью размера частиц и их распределения по размерам от времени, а также временнóй зависимостью концентрации частиц.

Возможны два разных процесса уменьшения поверхностной энергии дисперсной системы:

Укрупнение дисперсных частиц, приводящее к увеличению их размера (ζ = const ). Этот процесс называют коалесценцией (слиянием). Он характерен для систем с жидкими или газообразными частицами.

Уменьшение удельной поверхностной энергии (ζ = const ). Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. К процессу коагуляции относят также адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. Он заключается в образовании агрегатов из многих дисперсных частиц, разделенных тонкими прослойками дисперсионной среды.

Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция - образование агрегатов из нескольких частиц, разделенных прослойками среды), или коагуляционные структуры, отличающиеся подвижностью частиц относительно друг друга под действием сравнительно небольших нагрузок (места контактов разделены прослойками среды). Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля (структурированной дисперсной системы) называется пептизацией. Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твердых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодисперсную систему только с помощью диспергирования (принудительного).

2) Седиментационная неустойчивость. Вызывается различием плотностей веществ дисперсной фазы (ρ d ) и дисперсионной среды (ρ o ). Это различие приводит к постепенному оседанию (седиментации) более крупных частиц (если ρ d > ρ o ) или их всплыванию

(если ρ d < ρ o ).

Размер дисперсных частиц влияет на агрегативную и седиментационную устойчивости противоположным образом. Чем выше степень дисперсности (меньше размер частиц), тем сильнее проявляется их агрегативная неустойчивость, однако растет их устойчивость по отношению к седиментации.

3) Фазовая неустойчивость. Имеется в виду изменение структуры частиц при сохранении их размеров. Например, при синтезе коллоидных растворов металлов, оксидов и гидроксидов дисперсные частицы обычно аморфны, а со временем внутри частиц может происходить энергетически выгодный процесс кристаллизации.

4) Поверхностная неустойчивость. Ее причины различны. Например, ПАВ с большой молекулярной массой (белки) медленно диффундируют из объема дисперсионной среды на поверхность частиц и со временем образуют адсорбционный слой. Другой возможный механизм – растворение вещества дисперсных частиц в дисперсионной среде. Оно обусловливает несколько процессов:

Изменение химического состава раствора вблизи поверхности частиц и изменение строения ДЭС;

Изменение микрорельефа твердой поверхности и, как следствие, изменение краевых углов смачивания.

Анализ причин и форм неустойчивости дисперсных систем приводит к следующему принципиальному заключению: неравновесность вызывает эволюцию дисперсных систем .

Таким образом, характеристики дисперсных систем могут существенно изменяться во времени.

Основная проблема теории устойчивости дисперсных систем заключается в определении конкретных причин и механизма объединения отдельных дисперсных частиц в более крупные агрегаты и в выяснении факторов, которые препятствуют их агрегированию.

Теорию устойчивости гидрофобных золей детально разработали Б. Дерягин и Л. Ландау и независимо Э. Фервей и Т. Овербек (теория ДЛФО ). По этой теории на диспресные частицы действуют две силы – сила отталкивания (f e ), обусловленная электростатической и термодинамической составляющей (расклинивающее давление) и сила притяжения (f d |) (Ван-дер-Ваальсовские силы). В зависимости от соотношения этих сил возможны два варианта поведения коллоидного раствора:

1) Если преобладает сила притяжения (|f d | >|f e |), то дисперсные частицы сближаются, между ними возникает контакт, и они объединяются в более крупный агрегат (коллоидный

«димер»). Таким образом, в этом случае элементарный акт процесса коагуляции может состояться.

2) Если преобладает электростатическое отталкивание (|f d | <|f e |), то частицы могут не вступать в непосредственное соприкосновение, и коагуляция золя не происходит.

Таким образом, в качестве основного фактора термодинамической устойчивости дисперсной системы в теории ДЛФО принимают электростатическое (кулоновское) отталкивание дисперсных частиц.

Для расчета условий коагуляции вводятся дополнительные концепции:

1) Частицы имеют призматическую форму и разделены плоскопараллельным зазором шириной h (см. рис. 11).

2) Частицы перемещаются только в направлении, перпендикулярном зазору. Броуновское движение исключается.

Для расчета условий сопоставляются не силы притяжения, а соответствующие им энергии взаимодействия (U d , U e ).

A 12*

12 h 2

где A 1 * ,2 – сложная константа Гамакера; знак «–» указывает на взаимное притяжение.

Энергия электростатического взаимодействия (U e ) создается вследствие перекрывания диффузных слоев противоионов в тонкой пленке раствора электролита в зазоре между частицами.

U e , которая зависит от толщины пленки, создает в пленке дополнительное давление – расклинивающее давление (Π) . Π – это термодинамический параметр тонкой жидкой пленки в пространстве между частицами:

dW f , (19.2) dh

где W f – это работа, которую нужно затратить для увеличения поверхности тонкой пленки на единицу площади при постоянной температуре.

W f 2 W f , (19.3)

где W f – это дополнительная энергия пленки, которую нужно затратить для сближения поверхностных слоев ABB′A′ и CDD′C′.

Рисунок 11 - Возникновение расклинивающего давления в плоской тонкой пенной пленке с перекрыванием поверхностных слоев (h < 2δ)

По физическому смыслу величину W f можно рассматривать как энергетическое определение поверхностного натяжения тонкой пленки.

Физический смысл величины Π – это избыточное давление в тонкой пленке по сравнению с гидростатическим давлением в большом объеме жидкости.

(h ) p f p o , (19.4)

где p f – давление в тонкой пленке.

Положительное расклинивающее давление препятствует утоньшению пленки! Возникновение Π связано с поверхностными силами разной природы

(электрическими, магнитными, молекулярными). Для коллоидной химии особенно важны первые и последние.

При толщине жидкой пленки 1 мкм Π может

достигать 400 Па, а 0,04 мкм –

1,88∙104 Па.

64 Co RT

æh )

где 1/æ = δ – толщина ионной атмосферы.

Не обязательно запоминать формулы! Главное уяснить, что U e и U d имеют разные знаки и по-разному зависят от толщины разделяющей пленки h :

Рисунок 12 – Изменение энергии (U) тонкой пленки электролита в зависимости от ее толщины (h)

Как видно из рисунка, U e изменяется по экспоненциальному закону (пропорциональна e - æh ), U d – по степенному (пропорциональна 1/h 2 ). Поэтому на малых расстояниях будет преобладать притяжение (при h → 0 U d → ∞). На больших расстояниях также преобладает притяжение, т. к. степенная функция убывает медленнее, чем экспонента. На средних расстояниях возможен локальный (дальний) максимум. Он соответствует энергетическому (потенциальному) барьеру, который препятствует сближению частиц и их коагуляции.

Анализ уравнения и графика позволяет выделить три случая поведения дисперсной системы в зависимости от соотношения высоты энергетического барьера U M , глубины потенциальной ямы U N на больших расстояниях, и на малых расстояниях энергии тепловых колебаний k Б T .

Рисунок 13 – Изменение энергии (U) тонкой пленки электролита в зависимости от расстояния

Кривая 1 на рисунке 13 отвечает такому состоянию дисперсной системы, когда при любом расстоянии между частицами преобладает энергия притяжения над энергией отталкивания. Не меняет этого соотношения и тепловое движение частиц. При таком состоянии дисперсной системы наблюдается быстрая коагуляция с образованием агрегатов; в системах с жидкой и газообразной дисперсными фазами происходит коалесценция. Кривая 2 указывает на наличие достаточно высокого потенциального барьера и вторичного

Коллоидные системы характеризуются высокой раздробленностью дисперсной фазы (дисперсностью): размер коллоидных частиц обычно составляет см. Высокая дисперсность обуславливает большую поверхность раздела фаз и как следствие - большую поверхностную энер­гию Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f287, (9.1)

где s - площадь поверхности раздела фаз, формула" src="http://hi-edu.ru/e-books/xbook707/files/f16.gif" border="0" align="absmiddle" alt=") получили название лиофобных дисперсных систем. Такие системы не могут быть получены самопроизвольным диспергированием, для их об­разования должна быть затрачена внешняя энергия.

Казалось бы, термодинамически неустойчивые системы не имеют права на существование, они должны быстро терять устойчивость и агре­гировать. Однако агрегативная устойчивость таких систем может быть обеспечена кинетическими факторами..gif" border="0" align="absmiddle" alt=" (9.2)

где к - константа, объединяющая физические свойства среды; формула" src="http://hi-edu.ru/e-books/xbook707/files/f289.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" (9.3)

Здесь формула" src="http://hi-edu.ru/e-books/xbook707/files/f292.gif" border="0" align="absmiddle" alt=" (9.4)

и графически передается кривой на рис. 9.1а.

Как видно из рис. 9.1а, на больших и очень малых расстояниях преобладает энергия притяжения частиц (U < 0); на средних расстояниях (формула" src="http://hi-edu.ru/e-books/xbook707/files/f294.gif" border="0" align="absmiddle" alt=" , препятствующему агрегации частиц.

Первый минимум (1) на кривой, соответствует непосредственному соприкосновению частиц, а второй (2) - притяжению частиц, между ко­торыми имеются прослойки среды.

Устойчивость лиофобных систем, стабилизированных электроли­тами, зависит от соотношения величины электростатического барьера и кинетической энергии частиц формула" src="http://hi-edu.ru/e-books/xbook707/files/f296.gif" border="0" align="absmiddle" alt=", то при столкновении частицы не способны подойти друг к другу на расстояние 1 нм и они не слипаются. Такая система устойчива кинетически, оставаясь неустойчивой термодинамически.

Если формула" src="http://hi-edu.ru/e-books/xbook707/files/f298.gif" border="0" align="absmiddle" alt=" и, согласно (9..gif" border="0" align="absmiddle" alt=" при повышении концентрации постороннего электролита в системе. При достаточно высокой концентрации электролита толщина диффузного слоя уменьшается практически до нуля (изоэлектрическое состояние), исчезает потенциальный барьер (кривая 4), частицы слипают­ся при всяком столкновении друг с другом.

Рис.9.1. Зависимость энергии взаимодействия двух частиц U от расстоя­ния между ними - х (а); влияние концентрации электролита на величину потенциального барьера выделение">рис. 9.2. случаях адсорбция ПАВ при­водит к снижению поверхностной энергии Гиббса и тем самым - к повы­шению термодинамической устойчивости системы (адсорбционно-сольватный фактор устойчивости).

Кроме того, адсорбированные молекулы ПАВ образуют структу­ры, обладающие повышенной вязкостью и механической прочностью, разрушение которых требует определенной энергии и времени. Эти ад­сорбционные слои являются как бы барьером на пути сближения частиц и их агрегации (структурно-механический фактор устойчивости).

В случае ультрамикрогетерогенных систем, кроме перечисленных факторов, действует ещё и энтропийный фактор устойчивости. Сущность его определяется стремленгем дисперсной фазы к равномерному распре­делению по объёму системы вследствие броуновского движения. Этот фактор повышает термодинамическую устойчивость систем, снижая их общую энергию Гиббса.

Действительно, при равномерном распределении дисперсной фазы по объёму хаотичность системы выше, чем когда частицы находятся в виде агрегатов на дне сосуда..gif" border="0" align="absmiddle" alt="

такой процесс идет с уменьшением энергии Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f301.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook707/files/f303.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - время половинной коагуляции; к -константа скорости коагуляции. Константа к определяется соотношени­ем:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f313.gif" border="0" align="absmiddle" alt=" (9.6)

Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий: при нагревании или при охлаждении, перемешивании систем, действии ультразвука и т.д. Наибо­лее часто коагуляция дисперсных систем происходит при добавлении электролитов - электролитная коагуляция. Как уже описывалось выше, введете электролитов снижает высоту потенциального барьера оттал­кивания. Быстрая коагуляция наступает при введении определенного для данной системы количества электролита, при котором кинетическая энергия большинства частиц превышает величину указанного барьера. Это количество электролита в моль, вызывающее коагуляцию 1 литра золя называют порогом коагуляции Ск.

Коагулирующая способность электролитов зависит от заряда и ра­диуса ионов: порог коагуляции обратно пропорционален заряду (валентности) противоиона z в шестой степени (правило Шульца - Гарди):

Агрегативная устойчивость такого золя обеспечивается ионным фактором устойчивости. Потенциалобразующими (неиндифферентными) ионами при данном методе получения золя являются ионы формула" src="http://hi-edu.ru/e-books/xbook707/files/f238.gif" border="0" align="absmiddle" alt=" и формула мицеллы золя имеет вид:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f206.gif" border="0" align="absmiddle" alt=" образуются сравнительно не­большие по размерам седиментационно - устойчивые агрегаты. Что при­водит к повышению светорассеяния системы и, соответственно, - к уве­личению её оптической плотности. Поэтому исследование коагуляции в данном случае удобнее всего проводить с помощью турбидиметрического метода, измеряя оптическую плотность растворов золя.

ения, в то время как по-и молекулярных систем определяется

3. ГЕТЕРОГЕННОСТЬ КОЛЛОИДНЫХ СИСТЕМ КАК ОСНОВНОЕ ОТЛИЧИЕ ИХ ОТ МОЛЕКУЛЯРНЫХ РАСТВОРОВ

Мы уже говорили о том, что агрегативная неустойчивость -> специфическая особенность коллоидных систем. Это свойство коллоидных систем имеет большое практическое значение. Не будет преувеличением сказать, что основной задачей технолога производственного процесса, в котором имеют место коллоидные системы, является либо поддержание агрегативной устойчивости системы, либо, наоборот, обеспечение известных условий коагуляции.

Агрегативная неустойчивость является центральной проблемой коллоидной химии, и уже в начале курса следует хотя бы в самом общем виде рассмотреть, какие причины обусловливают агрега-тивную неустойчивость коллоидных систем и почему многие коллоидные системы, несмотря на их принципиальную агрегативную неустойчивость, существуют весьма продолжительное время. Причины неустойчивости коллоидных систем могут быть объяснены с двух точек зрения - термодинамической и кинетической.

Согласно термодинамике, агрегативная неустойчивость коллоидных систем обусловлена достаточно большой и всегда положительной свободной поверхностной энергией, сосредоточенной на межфазной поверхности системы. Поскольку поверхностная энергия представляет свободную энергию и так как все системы, обладающие избыточной свободной энергией, неустойчивы, это обусловливает способность коллоидных систем коагулировать. При коагуляции частицы слипаются, при этом межфазная поверхность хотя бы частично исчезает и, таким образом, уменьшается свободная энергия системы. Впрочем, Смолуховский, а в последнее время Г. А. Мартынов обратили внимание на то, что для уменьшения свободной энергии системы непосредственный контакт частиц не обязателен. Свободная энергия может уменьшаться и тогда, когда частицы не входят в непосредственное соприкосновение, а сближаются лишь на некоторое расстояние, позволяющее им взаимодействовать через слой, разделяющий их среды.

В самом деле, пусть

где F - свободная поверхностная энергия всей системы; st, % - межфазная поверхность; f - удельная свободная поверхностная энергия.

Величина f представляет собой сумму межфазной поверхностной энергии fa, определяемой состоянием монослоя на границе фаз, и свободной энергии fv вблизи поверхности, т. е. f = fa+ fv. Объемно-поверхностный вклад fv обусловлен изменением состояния слоев жидкости вблизи поверхности раздела фаз. Несмотря на то что вообще fa^fv, устойчивость системы "в большинстве случаев связана именно с изменением fv, так как при образовании агрегатов из твердых частиц граница раздела фаз обычно не исчезает. Поэтому в ходе коагуляции величина /а остается практически постоянной, а изменяется fv, причем степень изменения зависит от уменьшения расстояния между частицами. Конечно, все это не относится к эмульсиям, где имеет место коалесцеиция, то есть слияние частиц с полной ликвидацией первоначально разделяющей частицы межфазной поверхности.

Поскольку коллоидные системы, обладающие большой удельной поверхностью и большой свободной энергией, являются принципиально неравновесными системами, к ним неприложимо известное правило фаз. Такие системы, очевидно, всегда будут стремиться к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью, хотя это равновесие практически может никогда и не наступить. Термодинамическое толкование причин устойчивости или неустойчивости коллоидных систем чрезвычайно просто. Однако, как и всякая термодинамическая трактовка, это объяснение формально, т. е. она не раскрывает сущности свойства агрега-тивной неустойчивости. Кроме того, термодинамика не устанавливает связи между свободной энергией системы и тем, как долго система может пребывать в неравновесном состоянии. Поэтому более полным в данном случае является объяснение агрегативной неустойчивости или устойчивости коллоидных систем с позиций физической кинетики.

Согласно кинетическим представлениям неустойчивость или устойчивость коллоидной или микрогетерогенной системы определяется соотношением сил, действующих между отдельными ее часгицами. К таким силам относятся силы двух родов: силы сцепления, или аттракционные силы, стремящиеся сблизить частицы и образовать из них агрегат, и силы отталкивания, препятствующие коагуляции.

Силы сцепления имеют обычно ту же природу, что и межмолекулярные (ван-дер-ваальсовы) силы. Существенно, что силы, действующие между частицами, очень быстро возрастают при сближении частиц.

Силами отталкивания могут являться электрические силы, возникающие в результате избирательной адсорбции межфазной поверхностью одного из ионов электролита, присутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорбции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегатнвную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX.

Таким образом, относительная устойчивость коллоидной системы определяется тем, достаточно ли велики силы отталкивания, чтобы воспрепятствовать сближению частиц на близкие расстояния. Понятно, что такое объяснение не противоречит принципиальной неустойчивости огромного большинства коллоидных систем, поскольку при непосредственной близости поверхностей частиц силы сцепления, как правило, больше сил отталкивания и двум отдельным частицам энергетически обычно выгодней образовать агрегат. В дальнейшем мы увидим, что имеется много способов уменьшения сил отталкивания, и в частности, одним из таких способов является введение в систему электролитов.

4. РАСКЛИНИВАЮЩЕЕ ДАВЛЕНИЕ*

* Этот раздел главы написан Б. В. Дерягииым.

При утоньшении прослойки жидкости, разделяющей поверхности двух твердых тел или вообще двух любых адсорбировавших ионы фаз, между поверхностями этих фаз возникают* силы взаимодействия двоякого рода. Во-первых, силы, зависящие от притяжения между молекулами обоих тел, между молекулами жидкости и между молекулами жидкости и каждого тела (или фазы).

Если оба тела одинаковы, то эти силы приводят к притяжению тел, стремящемуся утоньшить прослойку жидкости. Во-вторых, в результате действия сил электрической природы между одинаковыми телами всегда возникает отталкивание, вызывающее утолщение жидкой прослойки. Поэтому, чтобы толщина прослойки не изменялась и система в целом сохраняла т